$ \definecolor{green}{RGB}{45,177,93} \definecolor{bleu}{RGB}{18,110,213} \definecolor{red}{RGB}{255,0,0} \displaystyle{ \label{Navier_stokes_1}\frac{Du}{Dt}\color{bleu}-\texttip{\frac{uv\tan\phi}{r}}{Force centrifuge}\color{black}+\frac{uw}{r}=\color{green}-\frac{1}{\rho}\frac{\partial{p}}{\partial{x}}\color{black}\color{red}+\texttip{2\Omega{v}\sin\phi}{Force de Coriolis}\color{black}-\texttip{2\Omega{w}\cos\phi}{Force de Coriolis}+\texttip{F_{rx}}{Friction} } $
$ \displaystyle{ \label{Navier_stokes_2}\frac{Dv}{Dt}\color{bleu}+\texttip{\frac{u^2\tan\phi}{r}}{Force centrifuge}\color{black}+\frac{vw}{r}=\color{green}-\frac{1}{\rho}\frac{\partial{p}}{\partial{y}}\color{black}\color{red}-\texttip{2\Omega{u}\sin\phi}{Force de Coriolis}\color{black}+\texttip{F_{ry}}{Friction} } $
$ \displaystyle{ \label{Navier_stokes_3}\frac{Dw}{Dt}-\frac{u^2+v^2}{r}=\color{green}{-\frac{1}{\rho}\frac{\partial{p}}{\partial{z}}}-\texttip{g}{Accélération de pesanteur}\color{black}+\texttip{2\Omega{u}\cos\phi}{Force de Coriolis}+\texttip{F_{rz}}{Friction} } $
$ \displaystyle{ \label{Navier_stokes_4}\color{green}\bullet\color{white}\bullet\color{green}\textrm{ Equilibre hydrostatique } } $
$ \displaystyle{ \label{Navier_stokes_5}\color{green}\bullet\color{red}\bullet\textrm{ Equilibre géostrophique} } $
$ \displaystyle{ \label{Navier_stokes_6}\color{green}\bullet\color{bleu}\bullet\textrm{ Equilibre cyclostrophique} } $